ANÉLIDOS MARINOS EXTRAORDINARIOS

Resumen

Presentamos un panorama sobre uno de los grupos de anélidos marinos más fascinantes y algunos detalles de unos de sus representantes: los osmótrofos que utilizan bacterias mutualistas que producen compuestos orgánicos a través de fuentes de sulfuro y metano como fuentes de energía. Estos gusanos extraordinarios, cuyas peculiaridades son rarezas no solo en el filo Annelida del cual son parte, sino en todo el reino animal, son los siboglínidos.

PALABRAS CLAVE: Annelida, Polychaeta, Siboglinidae, extremófilos, quimiosíntesis, osmotrofia, endosimbiosis.

Introducción

I año 1977 estuvo marcado por varios eventos. Se estrenaban dos películas que hicieron época: Fiebre del sábado por la noche y La guerra de las galaxias; se fundaba la empresa Apple; la sonda espacial Voyager I y la nave espacial Voyager II eran lanzadas al espacio; se descubrieron anillos alrededor de Urano. En el medio marino, el sumergible Alvin iniciaba las exploraciones en el mar profundo a 400 km al norte de las islas Galápagos, en una zona donde se unen dos placas continentales: Nazca y Cocos.

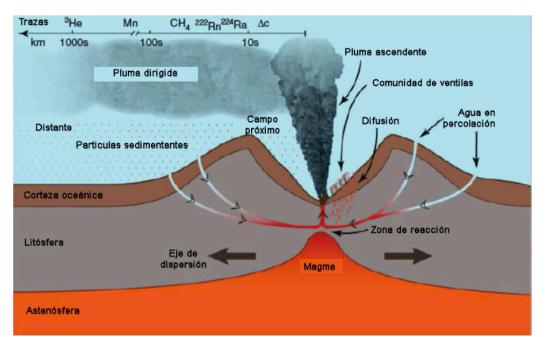
El **Alvin** fue una embarcación sumergible tripulada dedicada a la investigación oceánica (Fig. 1), que operó desde el barco de soporte RV **Atlantis** (AGOR-25), propiedad de la Marina de los Estados Unidos y dirigido por la Institución Oceanográfica de Woods Hole (WHOI). El sumergible se popularizó por su relevancia en el hallazgo de los restos del **Titanic** en 1986.

Los hallazgos de esa expedición financiada por la National Science Foundation cerca de las Galápagos cambiaron la forma de ver la vida extrema en nuestro planeta, pues a 2,500 m de profundidad descubrió un nuevo ecosistema lleno de vida, que ahora se conoce como ventilas hidrotermales o chimeneas volcánicas (Corliss *et al.* 1979) (Fig. 2). Estos ecosistemas son pequeños volcanes activos que lanzan incesantemente agua con productos sumamente tóxicos (Fig. 2), como ácido sulfhídrico y metano, y a temperaturas inesperadas, de hasta 400°C, que se mezclan con las aguas frías (~2°C) típicas de las regiones abisales (Desbruyères *et al.* 2006). Los materiales

expulsados se acumulan en estructuras elevadas y complejas (Fig. 3) que denominaron chimeneas.

Los exploradores del Alvin registraron grupos de miles de cangrejos, almejas, camarones, y unos organismos bastante raros de color carmesí que sobresalían de unos tubos blancos de gran tamaño, algunos de hasta 2 m de altura. El paisaje era tan espectacular que le llamaron Jardín de Rosas. Estos organismos tubícolas metían y sacaban una parte de su cuerpo fuera del tubo, como un lápiz labial, y sus tubos, que estaban unos juntos a otros, estaban anclados a las rocas (Fig. 4).

¿Qué eran los tubícolas?


La tripulación recolectó muestras de esos tubos y más tarde las enviaron al curador de gusanos del Instituto Smithsoniano, el prestigiado investigador Meredith Jones (1926-1996) (Fig. 5). El Dr. Jones estudio su morfología e hizo estudios histológicos, con lo que mostró que estos gusanos no tenían boca ni tubo digestivo. En 1981 nombró estos organismos como *Riftia pachyptila*, ubicándolos en una nueva familia Riftiidae, orden Vestimentifera, Phylum Pogonophora (Jones, 1981).

¿Cómo sobreviven?

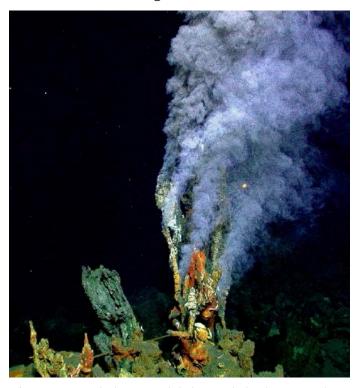
Las riftias no tienen tubo digestivo y, en vez de eso, tienen un trofosoma. Es un órgano de color pardo, esponjoso y que ocupa más de la mitad del largo del cuerpo del gusano (Fig. 6). El trofosoma no es un intestino, pero contribuye con la nutrición. En él no hay nada parecido a la comida, pero en vez de eso hay cristales de azufre.

Figura 1. Vista lateral izquierda del sumergible Alvin. Al frente el sistema para recolectar muestras. (Tomada de Internet, dominio público).

Figura 2. Ventilas hidrotermales o chimeneas volcánicas. (Tomada de Internet, dominio público).

¿Cómo viven sin luz ni fotosíntesis?

En el agua circundante a las ventilas hidrotermales hay ácido sulfhídrico, que para la mayoría de las formas de vida es altamente tóxico. En el marco de una conferencia académica impartida por el Dr. Jones en el Instituto Smithsoniano, Colleen Cavanaugh, una estudiante de biología de la Universidad de Harvard, argumentó que si el trofosoma no era el órgano que alimenta al gusano, quizá este era un filtro o algo similar que pudiera ayudar a descomponer todo el sulfhídrico con ayuda de bacterias dentro de su cuerpo.


Como era de esperar, la hipótesis de Cavanaugh no fue bien recibida, pero más tarde el Dr. Jones le envío un ejemplar para que lo estudiara (Kunzing, 2000). Así, después de un análisis basado en estudios químicos y del ADN, con respaldo de microscopía electrónica de barrido y de transmisión, Cavanaugh confirmó su hipótesis. Ella descubrió que trillones de bacterias viven en el trofosoma y que éstas usan el ácido sulfhídrico de las ventilas hidrotermales como fuente de energía en un proceso llamado quimiosíntesis (Cavanaugh et al. 1981). Cavanaugh obtuvo su doctorado en 1985, siendo su tesis sobre este peculiar tema. Hoy se sabe que esas bacterias son quimiolitotróficas (bacterias que oxidan sulfuros, específicamente) y que ésta simbiosis también involucra a bacterias que oxidan metano, como en los ambientes de filtraciones de hidrocarburo-metano (Thurber et al. 2020).

La quimiosíntesis es un proceso que utiliza compuestos químicos como fuente de energía, por lo que es opuesto a la fotosíntesis, donde se usa la luz solar para generar energía. A 2. 5 km de profundidad no hay fotosíntesis, en vez de sol las bacterias ingieren y procesan los sulfuros de las ventilas hidrotermales, que a su vez sirven de alimento para los gusanos. Como las bacterias están dentro del animal, se trata de una endosimbiosis.

¿Cómo entran las bacterias y el sulfuro de hidrógeno al cuerpo del gusano?

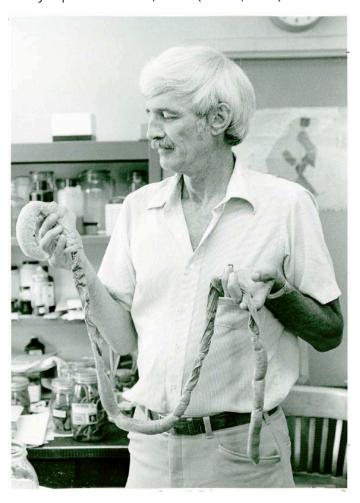
La forma en que las bacterias entran al cuerpo no es bien conocida, pero podría ser a través de la epidermis del gusano, mientras que los sulfuros son captados por las plumas color carmesí. Esas plumas se encuentran en una región corporal que se denomina obturáculo, que es un pedúnculo carnoso que tiene forma de embudo (Fig. 6). El obturáculo tiene un lóbulo derecho y uno izquierdo. Cada lóbulo tiene muchos palpos pinulados (que son las plumas). Estas plumas son carmesí porque las hemoglobinas de su sangre les otorgan esa coloración, como ocurre en nuestra sangre. Las estructuras tipo branquias atrapan el oxígeno, sulfuros o metano necesarios para la quimiosíntesis, y luego son transportados por las hemoglobinas hacía el trofosoma, donde son reducidos por las bacterias (Bright & Giere, 2005).

Aunque la quimiosíntesis de *Riftia* en las ventilas hidrotermales se descubrió en el siglo pasado, podría ser tan antigua como ~420 millones de años, por la estimación más extrema en el registro fósil de tubos de otros

Figura. 3. Fumarola de una ventila hidrotermal (el sedimento en el agua semeja humo). (Tomada de Internet, dominio público).

Figura. 4. Los tubos blancos y la punta rojo intenso, con un área media pálida corresponden con los siboglínidos *Riftiapachyptila*. (Tomada de Internet, dominio público).

siboglínidos, aunque la mayoría los sitúa en alrededor de 100 millones de años (Georgieva et al. 2019). Sabemos que esta relación simbiótica con bacterias que oxidan sulfuros es un fenómeno que también se ha observado en otros animales marinos (bivalvos, oligoquetos, nemátodos) y no solo en animales asociados con las ventilas hidrotermales. Sin embargo, para los amantes del mar, el descubrimiento de las ventilas hidrotermales y de *Riftia* constituyen uno de los hallazgos más relevantes de todos los tiempos. No sorprende, entonces, la intensidad y variedad de temas de investigación realizados en el grupo.


¿Están Riftia y otros siboglínidos en México?

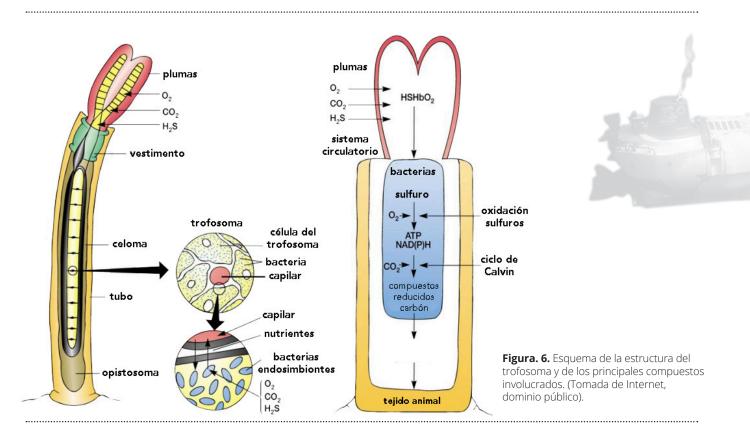
Sí. Riftia pachyptila también se ha encontrado en la cuenca de Guaymas y en la dorsal oceánica del Pacífico Este, a los 21°N (Malakhov y Galkin, 2000) y hay registros de otras especies de siboglínidos en San Eugenio, Baja California (Hartman 1961). Además, una especie fue descrita para el Golfo de Tehuantepec como Galathealinum mexicanum Adegoke, 1967. Es sorprendente el alto número de estudios sobre metales pesados, genética, fisiología, biología reproductiva, histología, bioquímica y filogenia conducidos por investigadores extranjeros con muestras de R. pachyptila de Guaymas, y la participación de investigadores nacionales también es de destacarse.

¿Pogonóforos o siboglínidos?

La clasificación de estos gusanos que dependen de bacterias simbiontes internas para su nutrición ha sido controversial y, como es de esperarse, ha cambiado a lo largo del tiempo en la medida que se conoce más sobre ellos. Así, *Riftia* pasó de ser parte del filo Pogonophora (que incluía a los frenulados y vestimentíferos), hoy en día se reconoce dentro del Phylum Annelida, familia Siboglinidae.

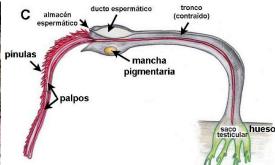
Siboglinidae tiene representantes no solo en las ventilas hidrotermales, sino también en los manantiales fríos con metano, y se asocia con huesos de ballenas y otros vertebrados en descomposición. Inclusive no solo se han encontrado a grandes profundidades. En Florida se ha reportado una especie a 24 m de profundidad (Southward y Cutler, 1986), mientras que en la zona hadal de la trinchera Izu-Bonin en Japón, está el registro a mayor profundidad: 9,735 m (Ivanov, 1957).

Figura. 5. Doctor Meredith L. Jones mostrando un siboglínido del género *Riftia* (Tomada de Smithsonian Institution Archives).


GUSANOS COME HUESOS (OSTEÓFAGOS)

El 6 de Febrero del 2002, Robert Vrijenhoek, un biólogo marino del Instituto de Investigación del Acuario de la Bahía de Monterrey (MBARI, por sus siglas en inglés), buscando almejas en el Cañón de Monterey (California) con un vehículo sumergible, encontró restos de una ballena gris a 2,891 m de profundidad cubiertos por una carpeta de diminutos organismos. Estos organismos fueron descritos más tarde como un nuevo género de gusanos: Osedax (O. rubiplumus) (Rouse et al. 2004). Osedax también es un siboglínido.

Osedax es un género de gusanos osteófagos diminutos que se alimentan de los esqueletos de las ballenas que se descomponen en las profundidades del océano, ayudando así a devolver al ecosistema la materia orgánica almacenada en los huesos (Fig. 7). A pesar de no poseer boca, ni tracto digestivo, ni trofosoma, estos gusanos poliquetos presentan un ovisaco posterior con un sistema vascularizado de raíces (Higgs et al. 2011). El interior del ovisaco, además de tener los ovarios, aloja


bacterias del orden Oceanospirillales, cuya característica principal es la degradación heterotrófica de compuestos orgánicos complejos retenidos en los huesos de la ballena, de manera que pueden absorberla fácilmente. El sistema de raíces penetra en los huesos de las ballenas y, con la ayuda de las bacterias, degradan los compuestos orgánicos (Tresguerres *et al.* 2013).

Los machos son pedomórficos; es decir, conservan rasgos larvales, son enanos y viven dentro del tubo de las hembras. Su única función es la reproducción, y cada hembra cuenta con unos 50-100 machos en el tubo construido por la hembra sobre el hueso de la ballena. De la región de estos tubos que da al exterior salen unos palpos plumosos muy coloridos que, a modo de branquias, realizan el intercambio de gases mientras que la otra parte que queda hacia el interior almacena las bacterias degradadoras en unas inusuales estructuras semejantes a raíces (Rouse *et al.* 2004; Maderspacher, 2015). El ovisaco, el sistema de raíces y la degradación heterótrofa son únicos entre los metazoos y de ahí la relevancia del grupo.

Figura. 7. A) Vértebras de ballena cubiertas por *Osedax*, B) Acercamiento a unos ejemplares mostrando los palpos pinados, C) Esquema de un macho enano de *Osedax*. (A-B con autorización de MBARI, C) Tomada de Internet, dominio público).

El hallazgo de Robert Vrijenhoekfue la punta del iceberg, pues desde entonces se han descrito 27 especies de *Osedax* en varias partes del mundo, incluyendo la Antártida y tan al norte como los 73°N (Eilersten *et al.* 2020). *Osedax* también coloniza huesos de otros vertebrados como vacas (Jones *et al.* 2008), tortugas, peces, aves y otros mamíferos marinos (Rouse *et al.* 2018). En la era molecular en la que nos encontramos, *Osedax* es el único género de anélidos marinos en el que para todas las especies se han generado y registrado secuencias genéticas (Tovar-Hernández y Salazar-Vallejo, 2021).

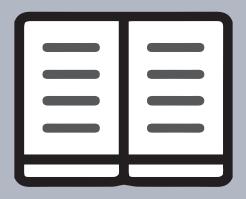
A pesar de que el descubrimiento de *Osedax* es reciente, Danise y Higgs (2015) registraron su presencia en huesos de plesiosaurios y tortugas del Cretácico Temprano, hace unos 100 millones de años. Aunque los reptiles plesiosaurios se extinguieron en masa al término del Cretácico (66 millones de años), los quelónidos sobrevivieron y se diversificaron, por lo que pudieron ser la principal fuente de alimento de *Osedax* durante los 20 millones de años que precedieron a la radiación de los cetáceos, la principal fuente de alimento de *Osedax* en la actualidad. Lo anterior sugiere, además, que *Osedax* pudiera tener una habilidad generalista para colonizar diferentes sustratos de vertebrados, tales como peces o aves marinas.

¿ESTÁ OSEDAX EN AGUAS MEXICANAS?

No. Sin embargo, se han registrado en restos de ballena gris. La distribución de dichas ballenas abarca los mares de Okhotsk y Bering hasta el litoral occidental de la península de Baja California y el golfo de California (Mate *et al.* 2015). Además, siendo las lagunas costeras sus zonas de parto y crianza, es altamente probable que las especies de *Osedax* descubiertas en California (Estados Unidos) se extiendan a lo largo del Pacífico oriental tropical, incluyendo México.

¿Los siboglínidos son los únicos gusanos osmótrofos?

No. Recientemente se reportó una especie indescrita del sabélido *Bispira* (familia Sabellidae) y otra del serpúlido *Laminatubus* (familia Serpulidae) en una ventila hidrotermal de Costa Rica con una nutrición a base de metano (Goffredi *et al.* 2020). El hallazgo es relevante pues hasta hace poco se pensaba que todos los miembros de Sabellidae y Serpulidae eran suspensívoros (Jumars *et al.* 2015), ya que usan las estructuras de su corona radiolar para capturar partículas de alimento y dirigirlas hacía la boca. Las nuevas especies de *Bispira* y *Laminatubus* descubiertas en Costa Rica tienen una simbiosis nutricional con bacterias metanotróficas del orden de las Methylococcales que viven adheridas a los radiolos (Goffredi *et al.* 2020).


COLECCIONES

Siboglinidae está conformada por 32 géneros y 178 especies (Pamungkas et al. 2019). En México, solo tres colecciones cuentan con algunos ejemplares de siboglínidios: la Colección de Anélidos Poliquetos de México (DFE. IN. 061. 0598) del Instituto de Ciencias del Mar y Limnología, UNAM cuenta con ejemplares de *Riftia* pachyptila Jones, 1981, que fueron recolectados por la Dra. Vivianne Solís-Weiss en el marco de una expedición en el Alvin en 1998 en la cuenca de Guaymas. Un ejemplar de éstas muestras fue donado al Dr. Rolando Bastida-Zavala para fines de docencia y actualmente se encuentra depositado en la Colección de Invertebrados Marinos de la Universidad del Mar, en Puerto Ángel, Oaxaca (OAX-CC-249-11). Por su parte, la Colección Regional de Poliquetos, del Instituto de Ciencias del Mar y Limnología con sede en Mazatlán (MAZ. POL. 078. 1198) tiene ejemplares de *R. pachyptila* y *Oasisia* alvinae recolectados por el Alvin en la dorsal oceánica del Pacífico Este, a una latitud de 21°N.

Paradójicamente, en colecciones de Estados Unidos hay más siboglínidos recolectados en México que en las colecciones nacionales. En la Colección de Invertebrados Bentónicos del SCRIPPS hay un importante número de ejemplares de Polybrachia, Siboglinum, Oasisia y Riftia del golfo de California (SCRIPPS Benthic Invertebrate Collection, 2020), así como en la Colección de Invertebrados del USNM para ejemplares del Pacífico mexicano y la parte mexicana del golfo de México (USNM Invertebrate Zoology Collections, 2020). Desafortunadamente no hay colegas mexicanos especializándose en la taxonomía de Siboglinidae, por lo que este vacío podría ser una buena oportunidad de estudio, especialización y trabajo para las futuras generaciones de poliquetólogos, que cada vez son menos pues la falta de oportunidades laborales en el país desanima a cualquiera.

AGRADECIMIENTOS

Agradecemos a Pablo Hernández-Alcántara y Michel Hendrickx del Instituto de Ciencias del Mar y Limnología (UNAM), y a Rolando Bastida-Zavala (Universidad del Mar) por la información proporcionada sobre las colecciones que manejan. Dos revisores anónimos emitieron recomendaciones que mejoraron la nota. Las imágenes de *Osedax* fueron utilizadas con lo autorización de MBARI, a quien agradecemos su apoyo y colaboración.

LITERATURA CITADA

- Adegoke, O. S. 1967. Pogonophora from the northeastern Pacific: First records from the Gulf of Tehuantepec, Mexico. *Pacific Science*. 21: 188–192.
- Cavanaugh, C. M., S. L. Gardiner, M. L. Jones, H. W. Jannasch, J. B. Waterbury. 1981. Prokaryotic cells in the hydrothermal vent tube worm *Riftia pachyptila* Jones: Possible chemoautotrophic symbionts. *Science*. 213 (4505): 340–342. DOI: 10. 1126/science. 213. 4505. 340.
- Corliss, J. B, J. Dymond, L. I. Gordon, J. M. Edmon, R. P. von Herzen, R. D. Ballard, K. Green, D. Williams, A. Bainbridge, K. Crane, T. H. van Andel. 1979. Submarine thermal springs on the Galápagos Rift. *Science*. 203 (4385): 1073–1083.
- Danise, S., N. D. Higgs. 2015. Bone-eating *Osedax* worms lived on Mesozoic marine reptile deadfalls. *Biology Letters*. 11 (4): 20150072. doi:10.1098/rsbl. 2015.0072
- Desbruyères, D., M. Segonzac, M. Bright. 2006. Handbook of deep-sea hydrothermal vent fauna, 2nd edition. Biologiezentrum der Oberösterreichischen Landesmuseen, Linz, Austria, 1–544.
- Eilertsen, M. H., T. G. Dahlgren, H. T. Rapp. 2020. A new species of *Osedax* (Siboglinidae: Annelida) from colonization experiments in the Arctic deep sea. *Frontiers Marine Science*. 7 (443): 1–8.
- Georgieva, M. N., C. T. S. Little, J. S. Watson, M. A. Sephton, A. D. Ball, A. G. Glover. 2019. Identification of fossil worm tubes from Phanerozoic hydrothermal vents and cold seeps. *Journal of Systematic Palaeontology.* 17 (4): 287–329. DOI: 10. 1080/14772019. 2017. 1412362
- Goffredi, S. K., E. Tilic, S. W. Mullin, K. S. Dawson, A. Keller, R. W. Lee, F. Wu, L. A. Levin, G. W. Rouse, E. E. Cordes, V. J. Orphan. 2020. Methanotrophic bacterial symbionts fuel dense populations of deep-sea feather duster worms (Sabellida, Annelida) and extend the spatial influence of methane seepage. *Science Advances*. 6, eaay8562; DOI: 10. 1126/sciadv. aay8562
- Hartman, O. 1961. New Pogonophora from the Eastern Pacific Ocean. *Pacific Science*. 15: 542–546.
- Higgs, N. D., C. T. S. Little. A. G. Glover. 2011. Bones as biofuels: a review of whale bone composition with implications for deep-sea biology and paleaoanthropology. *Proceedings of the Royal Society*. B 278: 9–17.
- Ivanov. A. V. 1957. Neue Pogonophora aus die nordwestlichen Teil des Stillen Ozeans. Zoologische Jahrbücher Abteilung für Systematik, Geographie und Biologie der Tiere 85: 431–500.
- Jones, M. L. 1981. *Riftia pachyptila*, new genus, new species, the vestimentiferan worm from the Galápagos Rift geothermal vents (Pogonophora). *Proceedings of the Biological Society of Washington*. 93: 1295–1313.
- Jones, W. J., S. B. Johnson, G. W. Rouse, R. C. Vrijenhoek. 2008. Marine worms (genus *Osedax*) colonize cow bones. *Proceedings of the Royal Society*. B 275 (1633): 387–391.

- Jumars, P. A., K. M. Dorgan, S. M. Lindsay. 2015. Diet of worms emended: an update of polychaete feeding guilds. *Annual Reviews Marine Science*. 7: 497–520.
- Kunzing, R. 2000. Mapping the Deep: The Extraordinary Story of Ocean Science. WW Norton & Company.
- Malakhov, V. V., S. V. Galkin. 2000. A synopsis of the vestimentiferan system. *Russian Journal of Marine Biology*. 26: 311–324. https://doi.org/10.1007/BF02759472
- Maderspacher, F. 2015. Evolution: They never come back, or do they? *Current Biology* 25 (2): R62, 3 pp.
- Mate, B. R., Y. V. Ilyashenko, A. L. Bradford, V. V. Vertyankin, G. A. Tsidulko, V. V. Rozhnov, L. M. Irvine. 2015. Critically endangered western gray whales migrate to the eastern North Pacific. *Biology Letters*. 11 (4): 20150071. doi:10.1098/rsbl.2015.0071
- Pamungkas, J., C. J. Glasby, G. B. Read, S. P. Wilson, M. J. Costello. 2019. Progress and perspectives in the discovery of polychaete worms (Annelida) of the world. *Helgoland Marine Research*. 73, 4 https://doi.org/10.1186/s10152-019-0524-z
- Rouse, G. W., S. K. Goffredi, R. C. Vrijenhoen. 2004 *Osedax*: Bone-eating marine worms with dwarf males. *Science*. 305: 668–671.
- Rouse, G. W., S. K. Goffredi, S. B. Johnson, R. C. Vrijenhoek. 2018. An inordinate fondness for *Osedax* (Siboglinidae: Annelida): Fourteen new species of bone worms from California. *Zootaxa*. 4377: 451–489.
- SCRIPPS Benthic Invertebrate Collection, 2020. https://sioapps. ucsd. edu/collections/bi/search/?q=FK181031&page=1
- Southward, E. C., J. K. Cutler. 1986. Discovery of Pogonophora in warm shallow waters of the Florida Shelf. *Marine Ecology Progress Series*. 28: 287–289.
- Thurber, A. R., S. Seabrook, R. M. Welsh. 2020. Riddles in the cold: Antarctic endemism and microbial succession impact methane cycling in the Southern Ocean. *Proceedings of the Royal Society B.* 287: 2020113420201134.
- Tresguerres, M., S. Katz, G. W. Rouse. 2013 How to get into bones: proton pump and carbonic anhydrase in *Osedax* boneworms. *Proceedings of the Royal Society B.* 280: 20130625, 9 pp.
- Tovar-Hernández, M. A., S. I. Salazar-Vallejo. 2021. Siboglinidae Caullery, 1914. En: *Poliquetos (Annelida: Polychaeta) de América Tropical.* De León-González JA, JR Bastida-Zavala, LF Carrera-Parra, ME García-Garza, SI Salazar-Vallejo, V. Solís-Weiss & Tovar-Hernández MA (Eds). Universidad Autónoma de Nuevo León, Monterrey, México. pp. 835-854. En prensa.
- USNM Invertebrate Zoology Collections, 2020 https://collections. nmnh. si. edu/search/iz/

ADRIAN LEYTE MANRIQUE. Biólogo por la Universidad Autónoma Metropolitana. Maestro en Recursos Bióticos y Doctor en Ciencias en Biodiversidad y Conservación por el Centro de Investigaciones Biológicas de la Universidad Autónoma del Estado de Hidalgo. Su interés se centra en aspectos de diversidad, ecología y conservación de los anfibios y reptiles en ambientes antropizados y conservados del estado de Guanajuato. Autor y co-autor de tres obras literarias que versan del conocimiento de los herpetozoos en los estados de Guanajuato e Hidalgo. Cuenta con seis capítulos en libro en temas relacionados con la herpetofauna. Su producción científica contempla alrededor de 30 trabajos publicados en revistas de divulgación, arbitradas e indexadas, nacionales e internacionales. Ha dirigido 12 tesis a nivel licenciatura y ha participado como sinodal, y jurado de examen en ocho trabajos. Actualmente se desempeña como profesor-investigador de tiempo completo "Titular A" en el Tecnológico Nacional de México, Campus Salvatierra (ITESS). Imparte las cátedras de Ecología, Desarrollo Sustentable, Taller de Investigación, Agroclimatología y Entomología.

aleyteman@gmail.com

ANA PAOLA MARTÍNEZ FALCÓN. Licenciada en biología en la Universidad Autónoma del Estado de Hidalgo México. Realizó la Maestría en Recursos Bióticos en la UAEH, México. Obtuvo el grado de Doctor en Biodiversidad: conservación y gestión de las especies y sus hábitats por parte de la Universidad de Alicante, España, con la tesis titulada "Diversidad y ecología de las especies de Copestylum Macquart 1846 (Diptera: Syrphidae) asociadas a cactáceas en la Reserva de la Biosfera Barranca de Metztitlán, México". Cuenta con 6 años de experiencia docente en diferentes instituciones públicas mexicanas, ha dictado numerosos cursos, entre los que destacan materias como análisis de la biodiversidad, entomología, redes ecológicas y análisis estadísticos empleando R software. Es especialista en medición de la biodiversidad, ecología de comunidades, procesos de descomposición de tejidos vegetales e interacciones planta-animal empleando el enfoque de redes complejas. Ha realizado estancias de Investigación en la Universidad de Edimburgo, Escocia y en el Instituto Cavanilles de Biología Evolutiva, Valencia, España. Realizó tres estancias posdoctorales, una en el Centro de Investigaciones en Ecosistemas, UNAM, México en, una segunda estancia posdoctoral en el Instituto de Ecología A.C. México y una tercera estancia en el Centro de Investigaciones Biológicas, UAEH, México. Ha realizado trabajo de campo en selvas tropicales mexicanas, bosques templados, zonas semidesérticas y ambientes mediterráneos españoles. Cuenta con publicaciones en revistas ISI y dos capítulos de libro. Ha sido revisora de las revistas PLoS ONE, PeerJ, Insect Conservation and Diversity, Biodiversity and Conservation, entre otras. Es miembro del Sistema Nacional de Investigadores Nivel I.

apmartinez@cieco.unam.mx

AURELIO RAMÍREZ-BAUTISTA. Inició su carrera herpetológica realizando investigaciones como estudiante de licenciatura en la Estación Biológica de Campo Los Tuxtlas, Veracruz, México. Recibió su licenciatura en Biología de la Universidad Veracruzana en Veracruz, México. Obtuvo su Maestría en Ciencias y su Doctorado en la Universidad Nacional Autónoma de México (UNAM), y recibió un nombramiento postdoctoral en la Universidad de Oklahoma, Norman, Oklahoma, Estados Unidos. Su principal investigación incluye estudios sobre ecología, demografía, reproducción, conservación y evolución de la historia de vida, utilizando como modelos a los anfibios y reptiles de México. Se desempeñó como presidente de la Sociedad Herpetológica Mexicana, como editor de sección de la revista Mesoamerican Herpetology y como profesor en la UNAM. Actualmente es profesor de la Universidad Autónoma del Estado de Hidalgo (UAEH), donde imparte cursos de Ecología de poblaciones, Herpetología, y Biología y ecología de la reproducción en anfibios y reptiles. Ha sido autor y coautor de 336 artículos y libros revisados por pares sobre herpetología, ecología, evolución de la historia de vida, dimorfismo del tamaño sexual, reproducción, cambio climático global, distribución potencial, demografía, conservación, comportamiento y ecología térmica. Como profesor, ha graduado a 74 estudiantes, incluidos 47 de licenciatura, 19 de maestría y ocho de doctorado. También ha participado como asesor externo de Ph.D. estudiantes de la Universidad Brigham Young, the University of Miami, and Eastern Carolina University, en Estados Unidos. Aurelio ha recibido varios premios nacionales (Premio Helia Bravo Hollis del Consejo Técnico de Investigaciones Científicas de la UNAM, e internacionales (Premio Donald Tinkle de la Southwestern Association of Naturalists), y tiene un perfil PRODEP (Programa para el Desarrollo Profesional Docente) en la UAEH. Miembro del Sistema Nacional de Investigadores Nivel II.

Correo electrónico: ramibautistaa@gmail.com

DAVID LAZCANO is a herpetologist who earned a bachelor's degree in chemical science in 1980, and a bachelor's degree in biology in 1982. In 1999 he earned a master's degree in wildlife management, and later a doctoral degree in biological sciences with a specialty in wildlife management (2005), all gained from the Facultad de Ciencias Biológicas of the Universidad Autónoma de Nuevo León. Currently, he is a full-time professor at the same institution, where he teaches courses in animal behavior, biogeography, biology of chordates, and wildlife management. He is also the head of Laboratorio de Herpetología and Coordinación de Intercambio

Académico de la Facultad de Ciencias Biológicas at UANL. Since 1979, he has been teaching and providing assistance in both undergraduate and graduate programs. His research interests include the study of the herpetofaunal diversity of northeastern Mexico, as well as the ecology, herpetology, biology of the chordates, biogeography, animal behavior, and population maintenance techniques of montane herpetofauna. In addition, the species Gerrhonotus lazcanoi has been named in his honor.

DAVID RAMIRO AGUILLÓN-GUTIÉRREZ. David Ramiro Aguillón Gutiérrez es Médico Veterinario Zootecnista egresado de la Universidad Autónoma de Nuevo León, México, Maestro en Ciencias Biológicas con especialidad en Embriología y Doctor en Ciencias Biológicas con especialidad en Embriología y Zoología por la Universidad Estatal de Moscú M. V. Lomonosov, Rusia. Realizó el postdoctorado en Biodiversidad y Conservación por la Universidad Autónoma del Estado de Hidalgo, México. Ha publicado como autor y coautor 22 artículos científicos, cuatro capítulos de libro y tres libros. Ha presentado trabajos de investigación en México, Estados Unidos, Rusia, Brasil y Panamá. Sus líneas de investigación se centran en el uso de organismos como bioindicadores de salud ambiental, biología y medicina de la conservación, ecotoxicología y ecofisiología. Ha impartido clases a nivel licenciatura y postgrado en la Universidad Autónoma del Estado de Hidalgo, la Universidad La Salle, la Universidad Iberoamericana, la Universidad Juárez del Estado de Durango y la Universidad Autónoma de Coahuila. Actualmente es Profesor-Investigador de Tiempo Completo en el Centro de Investigación y Jardín Etnobiológico de la Universidad Autónoma de Coahuila, México, en donde es encargado del Laboratorio de Bioindicadores. Es Miembro del Sistema Nacional de Investigadores.

david aguillon@uadec.edu.mx

IRERI SUAZO-ORTUÑO. Ireri Suazo-Ortuño es ecóloga y herpetóloga del Instituto de Investigaciones sobre los Recursos Naturales (INIRENA), Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Michoacán, México. Su investigación se centra principalmente en la ecología y conservación de anfibios y reptiles en el Bosque Tropical Seco del occidente de México. Fue Directora del INIRENA, Coordinadora General de Estudios de Posgrado y Coordinadora de Investigación Científica de la UMSNH. Es miembro del Sistema Nacional de Investigadores Nivel I.

ireri.suazo@umich.mx

ITZAHI SILVA MORALES. Bióloga Marina por la Universidad del Mar (UMAR), campus Puerto Ángel, Pochutla, Oaxaca (2018). Maestra en Ciencias por el El Colegio de la Frontera Sur (ECOSUR), Unidad Chetumal (2020). Estudiante de primer año del Doctorado en Ecología y Desarrollo Sustentable (2021-Presente). Producción académica de tres artículos científicos y un capítulo de libro. Colaboradora en dos proyectos de investigación concluidos: "Evaluación del potencial de las técnicas de Secuencia masiva, ADN ambiental y Código de barras genético para la descripción de la biodiversidad bentónica de los ecosistemas marinos

y costeros de Oaxaca" y "Especies exóticas de México: Riesgos y Propuestas de Manejo". Participación en seis congresos nacionales e internacionales. Cuatro cursos de actualización en herramientas moleculares y sistemática de invertebrados marinos. Dos estancias profesionales, en El Colegio de la Frontera Sur, Unidad Chetumal y en la Universidad de Antioquia, Medellín, Colombia. Miembro de la Red Temática Código de Barras de la Vida (MEXBOL). Interés en la sistemática y taxonomía de invertebrados marinos, específicamente sipúnculos. Análisis morfológicos y moleculares aplicados a la resolución de problemas taxonómicos. Divulgadora científica en la página de Facebook Cacahuate Marino.

JORGE LUIS BECERRA-LÓPEZ. Egresado de la Facultad de Ciencias Biológicas de la Universidad Juárez del Estado de Durango (2003–2008). Cuento con una maestría en Recursos Naturales y Medio Ambiente en Zonas Áridas por la Universidad Autónoma Chapingo (2010–2012), un doctorado en Ciencias en Biodiversidad y Conservación por la Universidad Autónoma del Estado de Hidalgo (2013–2016) y un pos doctorado en Conservación de Ecosistemas en el Centro de Investigación en Sustentabilidad Energética y Ambiental del Noreste (CISEAN) (2017–2018). He realizado diversas estancias de investigación científica en universidades del extranjero, dentro de las que destacan las realizadas en la Universidad Miguel Hernández, España, y la Universidad de la Ciudad de Nueva York (CUNY), Estados Unidos de Norte América. Actualmente dirijo el Laboratorio de Cambio Climático y Conservación de Recursos naturales de la Facultad de Ciencias Biológicas, perteneciente a la Universidad Juárez del Estado de Durango. Mi programa de investigación integra conocimientos y metodologías de diversos campos científicos para comprender los procesos evolutivos que dieron lugar a los patrones de biodiversidad actual, como la biodiversidad responde a los cambios globales y como esta puede ser conservada. Así mismo, el cambio climático, la alteración del hábitat y las invasiones biológicas son temas particularmente importantes en mi línea de investigación. Es miembro del Sistema Nacional de Investigadores Nivel I.

biologo.jlbl@gmail.com

LARRY DAVID WILSON is a herpetologist with lengthy experience in Mesoamerica. He was born in Taylorville, Illinois, United States, and received his university education at Millikin University in Decatur, Illinois, the University of Illinois at Champaign-Urbana (B.S. degree), and at Louisiana State University in Baton Rouge (M.S. and Ph.D. degrees). He has authored or co-authored more than 430 peer-reviewed papers and books on herpetology. Larry is the senior editor of Conservation of Mesoamerican Amphibians and Reptiles and the co-author of eight of its chapters. His other books include The Snakes of Honduras, Middle American Herpetology, The Amphibians of Honduras, Amphibians & Reptiles of the Bay Islands and Cayos Cochinos, Honduras, The Amphibians and Reptiles of the Honduran Mosquitia, and Guide to the Amphibians & Reptiles of Cusuco National Park, Honduras. To date, he has authored or co-authored the descriptions of 74 currently recognized herpetofaunal species, and seven

species have been named in his honor, including the anuran Craugastor lauraster, the lizard Norops wilsoni, and the snakes Oxybelis wilsoni, Myriopholis wilsoni, and Cerrophidion wilsoni. Currently, Larry is Co-chair of the Taxonomic Board for the journal Mesoamerican Herpetology

LYDIA ALLISON FUCSKO is an amphibian conservationist and environmental activist.. She is also a gifted photographer who has taken countless pictures of amphibians, including photo galleries of mostly southeastern Australian frogs. Dr. Fucsko has postgraduate degrees in computer education and in vocational education and training from The University of Melbourne, Parkville, Melbourne, Australia. Additionally, Lydia holds a Master's Degree in Counseling from Monash University, Clayton, Melbourne, Australia. She received her Ph.D. in environmental education, which promoted habitat conservation, species perpetuation, and global sustainable management from Swinburne University of Technology, Hawthorn, Melbourne, Australia. Dr. Fucsko, in addition, is an educational consultant. The species Tantilla lydia has been named recently in her honor.

LIZZETH A. TORRES-HERNÁNDEZ. Es pasante de Licenciatura en Biología en la Universidad Autónoma del Estado de Hidalgo. Está interesada en el campo de la ecología, diversidad y conservación de anfibios y reptiles de México, así como en el estudio de los efectos del cambio climático en la distribución de estos grupos biológicos. Ha realizado aportes sobre la diversidad y conservación de anfibios y reptiles de México.

lizzeth.torres97@gmail.com

MARÍA ANA TOVAR-HERNÁNDEZ, es bióloga egresada de la UNAM (2000), Maestra en Ciencias en Manejo de Recursos Naturales y Desarrollo Regional y Doctora en Ecología y Desarrollo Sustentable por ECOSUR (2003 y 2006). Realizó dos posdoctorados (ECOSUR 2007, DGAPA-UNAM 2008-2010). Es miembro del Sistema Nacional de Investigadores desde 2009 (nivel II) e Investigadora Honorífica de Sinaloa desde 2012. Se ha especializado en biología, ecología y sistemática (morfológica y molecular) de poliquetos y otros invertebrados marinos exóticos invasores en marinas y puertos de México; así como en la elaboración de análisis de riesgo y planes de detección temprana y programas de monitoreo. Su producción académica versa en la publicación de 52 artículos en revistas indizadas (como primera autora en 30 de ellos), 3 artículos de divulgación, 2 artículos en revistas no indizadas, 1 libro y 15 capítulos de libros. Ha presentado trabajos en 27 congresos nacionales y 21 internacionales. Ha establecido 49 especies nuevas para la ciencia y dos nuevos géneros. En los últimos cuatro últimos años se ha desempeñado en la Facultad de Ciencias Biológicas de la Universidad Autónoma de Nuevo León.

RACIEL CRUZ-ELIZALDE. Es un herpetólogo mexicano que recibió su grado de Licenciatura en Biología, y los posgrados de Maestría y Doctorado en Ciencias en Biodiversidad y Conservación de la Universidad

Autónoma del Estado de Hidalgo (UAEH). Realizó una estancia posdoctoral en la Universidad Nacional Autónoma de México, y actualmente es Profesor de Tiempo Completo de la Universidad Autónoma de Querétaro. Raciel está interesado en la ecología, evolución de la historia de vida, diversidad y conservación de anfibios y reptiles de México. Es autor o coautor de cerca de 65 publicaciones, que incluyen artículos, notas, capítulos de libros y libros sobre ecología, evolución de la historia de la vida, dimorfismo del tamaño sexual, reproducción y conservación de anfibios y reptiles. Ha dirigido tesis de licenciatura, y miembro de comités de alumnos de posgrado. Su investigación incluye la evolución de la historia de vida de diversas especies de lagartijas del género Sceloporus, temas de conservación en áreas naturales protegidas y el análisis de rasgos ecológicos y morfológicos en la composición de comunidades de anfibios y reptiles, principalmente en el bosque mesófilo de montaña. Es miembro del Sistema Nacional de Investigadores Nivel I. Correo electrónico: cruzelizalde@gmail.com

SERGIO LUNA es biólogo por parte de la Facultad de Ciencias Biológicas, U.A.N.L. y M. en C. en Acuicultura por parte del Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California. Actualmente es estudiante del Doctorado en Conservación, Fauna Silvestre y Sustentabilidad, en la Facultad de Ciencias Biológicas, U.A.N.L. Es coautor de dos artículos de investigación, dos capítulos de libro, una nota científica, ocho reportes técnicos y seis presentaciones en congresos y cuenta con 58 citas a sus trabajos. Su área de investigación incluye análisis de riesgo y control de especies acuáticas invasoras y fisiología y reproducción de peces.

SERGIO I. SALAZAR-VALLEJO investigador Titular C de ECOSUR. Biólogo (1981), Maestro en Ciencias en Ecología Marina (1985), Doctor en Biología (1998). Miembro del Sistema Nacional de Investigadores desde 1985 (Investigador Nacional desde 1988, SNI 3901, nivel actual III). Noventa y seis artículos en revistas JCR y 3 en revistas non-ICR, 27 capítulos de libro. Tres libros publicados (1989. Poliquetos de México; 1991. Contaminación Marina; 2005. Poliquetos pelágicos del Caribe) y tres co-editados (1991. Estudios Ecológicos Preliminares de la Zona Sur de Quintana Roo; 1993. Biodiversidad Marina y Costera de México, 2009. Poliquetos de América Tropical); 47 publicaciones de divulgación. Veinticuatro tesis dirigidas: 8 de doctorado (todos SNI), 8 de maestría y 8 de licenciatura. Profesor de Licenciatura en ocho instituciones (Cursos: Zoología de Invertebrados, Ecología Marina, Biogeografía, Comunicación Científica, Taxonomía de Poliquetos), Profesor de Posgrado en seis instituciones (Cursos: Ecología del Bentos, Comunicación Científica, Ecología Costera, Sistemática Avanzada) y del Diplomado Reserva. Veintiocho ponencias en congresos nacionales y 33 ponencias en congresos internacionales. Treinta y seis distinciones académicas. Arbitro de 31 revistas o series y miembro del comité editorial de cuatro de ellas. Veintinueve estancias de investigación en Museos e Instituciones de Estados Unidos, Europa y Sudamérica. Areas de investigación: biodiversidad costera, taxonomía de invertebrados marinos, política ambiental y científica (evaluación académica).

Biología y Sociedad

Revista de Divulgación Científica de la Facultad de Ciencias Biológicas, UANL

